We have,
limx→−∞(√4x2−7x+2x)
Taking y=−x
If x→−∞⇒−x→∞⇒y→∞
=limy→∞(√4(−y)2−7(−y)+2(−y))
=limy→∞(√4y2+7y−2y)
On rationalising numerator, we get
=limy→∞(√4y2+7y−2y)(√4y2+7y+2y)(√4y2+7y+2y)
=limy→∞((√4y2+7y)2−(2y)2)(√4y2+7y+2y)
[∵(a−b)(a+b)=a2−b2]
=limy→∞(4y2+7y−4y2)(√4y2+7y+2y)
=limy→∞7y(√4y2+7y+2y)
=limy→∞7yy(√4+7y+2)
=limy→∞7√4+7y+2
When y→∞, then 1y→0
=7(√4+7(0)+2)=7(√4+2)=74
Therefore,
limx→−∞(√4x2−7x+2x)=74