wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limx(4x27x+2x)

Open in App
Solution

We have,
limx(4x27x+2x)

Taking y=x
If xxy

=limy(4(y)27(y)+2(y))

=limy(4y2+7y2y)

On rationalising numerator, we get
=limy(4y2+7y2y)(4y2+7y+2y)(4y2+7y+2y)

=limy((4y2+7y)2(2y)2)(4y2+7y+2y)
[(ab)(a+b)=a2b2]

=limy(4y2+7y4y2)(4y2+7y+2y)

=limy7y(4y2+7y+2y)

=limy7yy(4+7y+2)

=limy74+7y+2

When y, then 1y0

=7(4+7(0)+2)=7(4+2)=74

Therefore,
limx(4x27x+2x)=74

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon