We have,
limx→∞√x+1−√x
It is of (∞−∞) form.
On rationalising the numerator, we get
=limx→∞((√x+1−√x)×(√x+1+√x))(√x+1+√x)
=limx→∞((√x+1−√x)×(√x+1+√x))(√x+1+√x)
=limx→∞((√x+1)2−(√x)2)(√x+1+√x)
=limx→∞(x+1−x)(√x+1+√x)
=limx→∞1(√x+1+√x)
=1∞=0
Therefore,
limx→∞√x+1−√x=0