We have,
limx→−∞(√x2−8x+x)
Taking y=−x
If x→−∞⇒−x→∞⇒y→∞
=limy→∞(√(−y)2−8(−y)+(−y))
=limy→∞(√y2+8y−y)
On rationalising numerator, we get
=limy→∞(√y2+8y−y)(√y2+8y+y)(√y2+8y+y)
=limy→∞((√y2+8y)2−y2)(√y2+8y+y)
[∵(a−b)(a+b)=a2−b2]
=limy→∞(y2+8y−y2)(√y2+8y+y)
=limy→∞8y(y√1+8y+y)
=limy→∞8yy(√1+8y+1)
=limy→∞8√1+8y+1
When y→∞, then 1y→0
=8(√1+8(0)+1)=82=4
Therefore,
limx→−∞(√x2−8x+x)=4