On rationalising numerator ,we get
=limx→∞x[√x2+1−√x2−1][√x2+1+√x2−1][√x2+1+√x2−1]
=limx→∞x[(√x2+1)2−(√x2−1)2][√x2+1+√x2−1]
[∵(a−b)(a+b)=a2−b2]
=limx→∞x[x2+1−x2+1][√x2+1+√x2−1]
=limx→∞2x[√x2+1+√x2−1] (∞∞ form)
Dividing numerator and denominator by x, we get
=limx→∞2xx[√x2+1x2+√x2−1x2]
=limx→∞2[√1+1x2+√1−1x2]
When x→∞, then 1x→0
=2[√1+0+√1−0]=22=1
∴limx→∞x[√x2+1−√x2−1]=1