We have,
limx→√10√7+2x−(√5+√2)x2−10
=limx→√10√7+2x−√(√5+√2)2x2−10
=limx→√10√7+2x−√5+2+2√10x2−10
=limx→√10√7+2x−√7+2√10x2−10 (00) form
On rationalising numerator, we get
=limx→√10(√7+2x−√7+2√10)(√7+2x+√7+2√10)(x2−10)(√7+2x+√7+2√10)
=limx→√10((√7+2x)2−(√7+2√10)2)(x2−10)(√7+2x+√7+2√10)
=limx→√10(7+2x−7−2√10)(x2−10)(√7+2x+√7+2√10)
=limx→√10(2x−2√10)(x2−(√10)2)(√7+2x+√7+2√10)
=limx→√10(2x−2√10)(x−√10)(x+√10)(√7+2x+√7+2√10)
[(x−√10)≠0]
=limx→√102(x+√10)(√7+2x+√7+2√10)
=2(√10+√10)(√7+2√10+√7+2√10)
=2(2√10)(2√7+2√10)
=22√10(2√(√5+√2)2)
On rationalising denominator, we get
=(√5−√2)2√10(√5+√2)(√5−√2)
=(√5−√2)2√10(5−2)
Therefore,
limx→√10√7+2x−(√5+√2)x2−10=(√5−√2)6√10