We have,
limx→√2√3+2x−(√2+1)x2−2
=limx→√2⎡⎢
⎢
⎢
⎢⎣√3+2x−√(√2+1)2(x−√2)(x+√2)⎤⎥
⎥
⎥
⎥⎦
=limx→√2√3+2x−√2+1+2√2(x−√2)(x+√2)
=limx→√2√3+2x−√3+2√2(x−√2)(x+√2) (00) form
On rationalising numerator, we get
=limx→√2⎡⎣(√3+2x−√3+2√2)(√3+2x+√3+2√2)(x−√2)(x+√2)(√3+2x+√3+2√2)⎤⎦
=limx→√2⎡⎣(√3+2x)2−(√3+2√2)2(x−√2)(x+√2)(√3+2x+√3+2√2)⎤⎦
=limx→√2⎡⎣3+2x−3−2√2(x−√2)(x+√2)(√3+2x+√3+2√2)⎤⎦
=limx→√2⎡⎣2(x−√2)(x−√2)(x+√2)(√3+2x+√3+2√2)⎤⎦
=2(√2+√2)(√3+2√2+√3+2√2)
=2(2√2)(2√3+2√2)
=2(2√2)(√3+2√2)
=1(2√2)(√(√2+1)2)
=1(2√2)(√2+1)
On rationalising denominator, we get
=(√2−1)(2√2)(√2+1)(√2−1)
=(√2−1)(2√2)((√2)2−1)
Therefore,
=limx→√2[√3+2x−(√2+1)x2−2]=(√2−1)2√2