wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limx23+2x(2+1)x22

Open in App
Solution

We have,
limx23+2x(2+1)x22

=limx2⎢ ⎢ ⎢ ⎢3+2x(2+1)2(x2)(x+2)⎥ ⎥ ⎥ ⎥

=limx23+2x2+1+22(x2)(x+2)

=limx23+2x3+22(x2)(x+2) (00) form

On rationalising numerator, we get

=limx2(3+2x3+22)(3+2x+3+22)(x2)(x+2)(3+2x+3+22)

=limx2(3+2x)2(3+22)2(x2)(x+2)(3+2x+3+22)

=limx23+2x322(x2)(x+2)(3+2x+3+22)

=limx22(x2)(x2)(x+2)(3+2x+3+22)

=2(2+2)(3+22+3+22)

=2(22)(23+22)

=2(22)(3+22)

=1(22)((2+1)2)


=1(22)(2+1)

On rationalising denominator, we get

=(21)(22)(2+1)(21)

=(21)(22)((2)21)

Therefore,

=limx2[3+2x(2+1)x22]=(21)22

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon