Given: limx→√3x2−3x2+3√3x−12 becomes 00 form
Using Factorization method
⇒limx→√3x2−3x2+3√3x−12
⇒limx→√3x2−(√3)2x2+3√3x−12
⇒limx→√3(x−√3)(x+√3)x2+4√3x−√3x−12
[∵(a2−b2)=(a+b)(a−b)]
⇒limx→√3(x−√3)(x+√3)x(x+4√3)−√3(x+4√3)
⇒limx→√3(x−√3)(x+√3)(x−√3)(x+4√3)
⇒limx→√3(x+√3)(x+4√3)=(√3+√3)(√3+4√3)=2√35√3
=25
∴limx→√3x2−3x2+3√3x−12=25