We have,
limx→√6√5+2x−(√3+√2)x2−6
=limx→√6√5+2x−√(√3+√2)2x2−6
=limx→√6√5+2x−√3+2+2√3√2x2−6
=limx→√6√5+2x−√5+2√6x2−6 (00)form
On rationalising numerator, we get
=limx→√6(√5+2x−√5+2√6)(√5+2x+√5+2√6)(x2−6)(√5+2x+√5+2√6)
=limx→√6((√5+2x)2−(√5+2√6)2)(x2−6)(√5+2x+√5+2√6)
=limx→√6(5+2x−5−2√6)(x2−(√6)2)(√5+2x+√5+2√6)
=limx→√6(2x−2√6)(x2−(√6)2)(√5+2x+√5+2√6)
=limx→√62(x−√6)(x2−(√6)2)(√5+2x+√5+2√6)
=limx→√62(x−√6)(x−√6)(x+√6)(√5+2x+√5+2√6)
[(x−√6)≠0]
=limx→√62(x+√6)(√5+2x+√5+2√6)
=2(√6+√6)(√5+2√6+√5+2√6)
=1(2√6)(√5+2√6)
=1(2√6)(√(√3+√2)2)
=1(2√6)(√3+√2)
=(√3−√2)(2√6)(√3+√2)(√3−√2)
=(√3−√2)(2√6)((√3)2−(√2)2)
=(√3−√2)(2√6)
Therefore,
limx→√6√5+2x−(√3+√2)x2−6=(√3−√2)2√6