=limx→0(√1+x+x2)(√1+x+x2+1)x(√1+x+x2+1)
=limx→0((√1+x+x2)2−12)x(√1+x+x2+1)
[∵(a−b)(a+b)=a2−b2]
=limx→0(1+x+x2−1)x(√1+x+x2+1)
=limx→0x(1+x)x(√1+x+x2+1)[x≠0]
=limx→0(1+x)(√1+x+x2+)
=(1+0)(√1+0+02+1)=12
∴limx→0√1+x+x2−1x=12