⇒x4−3x3+2=(x−1)(x3−2x2−2x−2)
Also, denominator
⇒x3−5x2+3x+1=(x−1)(x2−4x−1)
∴limx→1x4−3x3+2x3−5x2+3x+1
=limx→1(x−1)(x3−2x2−2x−2)(x−1)(x2−4x−1)
⇒limx→1(x3−2x2−2x−2)(x2−4x−1)
=((1)3−2(1)2−2(1)−2)(12−4(1)−1)
=(1−2−2−2)(1−4−1)=54
Therefore,
limx→1x4−3x3+2x3−5x2+3x+1=54