(∞−∞)form
⇒limx→1{x−2x2−x−1x3−3x2+2x}
⇒limx→1{x−2x(x−1)−1x(x2−3x+2)}
⇒limx→1{x−2x(x−1)−1x(x2−2x−x+1)}
=limx→1{x−2x(x−1)−1x(x(x−2)−1(x−2)}
⇒limx→1{x−2x(x−1)−1x(x−1)(x−2)}
⇒limx→1{(x−2)2−12x(x−1)(x−2)}
⇒limx→1{(x−2−1)(x−2+1)x(x−1)(x−2)}
[∵(a2−b2)=(a+b)(a−b)]
⇒limx→1{(x−3)(x−1)x(x−1)(x−2)}
⇒limx→1{(x−3)x(x−2)}
=(1−3)1(1−2)=2
Therefore,
⇒limx→1{x−2x2−x−1x3−3x2+2x}=2