⇒limx→3x2−x−6x3−3x2+x−3=limx→3x2−3x+2x−6x3−3x2+x−3
⇒limx→3x(x−3)+2(x−3)x2(x−3)+(x−3)
⇒limx→3(x−3)(x+2)(x−3)(x2−1)
⇒limx→3(x+2)(x2+1)
=3+2(32+1)=510
=12
Therefore,
⇒limx→3x2−x−6x3−3x2+x−3=12
limx→3x2−x−6x3−3x2+x−3