wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limxπ41tanx12sinx

Open in App
Solution

We have,
limxπ41tanx12sinx

On rationalising the denominator, we get
=limxπ41tanx12sinx×1+2sinx1+2sinx

=limxπ4(1tanx)(1+2sinx)12(2sinx)2
[(a+b)(ab)=a2b2]

=limxπ41sinxcosx(1+2sinx)(12sin2x)

=limxπ4(cosxsinx)(1+2sinx)cosxcos2x
[cos2x=12sin2x]

=limxπ4(cosxsinx)(1+2sinx)cosx(cos2xsin2x)

[cos2x=cos2xsin2x]

=limxπ4(cosxsinx)(1+2sinx)cosx(cosxsinx)(cosx+sinx)

=limxπ4(1+2sinx)cosx(cosx+sinx)

=(1+2sinπ4)cosπ4(cosπ4+sinπ4)

=(1+2×12)12(12+12)

=212(22)=2

Therefore,
limxπ41tanx12sinx=2

flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon