We have,
limx→π41−tanx1−√2sinx
On rationalising the denominator, we get
=limx→π41−tanx1−√2sinx×1+√2sinx1+√2sinx
=limx→π4(1−tanx)(1+√2sinx)12−(√2sinx)2
[∵(a+b)(a−b)=a2−b2]
=limx→π41−sinxcosx(1+√2sinx)(1−2sin2x)
=limx→π4(cosx−sinx)(1+√2sinx)cosxcos2x
[∵cos2x=1−2sin2x]
=limx→π4(cosx−sinx)(1+√2sinx)cosx(cos2x−sin2x)
[∵cos2x=cos2x−sin2x]
=limx→π4(cosx−sinx)(1+√2sinx)cosx(cosx−sinx)(cosx+sinx)
=limx→π4(1+√2sinx)cosx(cosx+sinx)
=(1+√2sinπ4)cosπ4(cosπ4+sinπ4)
=(1+√2×1√2)1√2(1√2+1√2)
=21√2(2√2)=2
Therefore,
limx→π41−tanx1−√2sinx=2