We have,
limx→11+cosπx(1−x)2
Put x=1+h,h→0
=limh→01+cosπ(1+h)(1−(1+h))2
=limh→01+cos(π+πh)(−h)2
=limh→01−cosπhh2 [∵cos(π+θ)=−cosθ]
=limh→02sin2πh2h2 [∵1−cos2θ=2sin2θ]
=2limh→0sin2πh24×1π2×π2h24
=π22limh→0sin2πh2π2h24
=π22limh→0⎛⎜
⎜
⎜⎝sinπh2πh2⎞⎟
⎟
⎟⎠2
=π22×1 [∵limh→0sinhh=1]
=π22
Therefore,
limx→11+cosπx(1−x)2=π22