wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limx11+cosπx(1x)2

Open in App
Solution

We have,

limx11+cosπx(1x)2

Put x=1+h,h0

=limh01+cosπ(1+h)(1(1+h))2

=limh01+cos(π+πh)(h)2

=limh01cosπhh2 [cos(π+θ)=cosθ]

=limh02sin2πh2h2 [1cos2θ=2sin2θ]

=2limh0sin2πh24×1π2×π2h24

=π22limh0sin2πh2π2h24

=π22limh0⎜ ⎜ ⎜sinπh2πh2⎟ ⎟ ⎟2

=π22×1 [limh0sinhh=1]


=π22

Therefore,

limx11+cosπx(1x)2=π22


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon