We have,
limx→1(1−x2)sinπx
Put x=1+h,
If x→1 then h→0
=limh→0(1−(1+h)2)sinπ(1+h)
=limh→0(1−(1+h2+2h))sin(π+πh)
[∵(a+b)2=a2+b2+2ab]
=limh→0−(h2+2h)−sinπh
[∵sin(π+θ)=−sinθ]
Dividing Numerator and Denominator by h
=limh→0(h2+2h)hπ×sinπhπh
=1πlimh→0h+2sinπhπh [∵limh→0sinhh=1]
=1π×21=2π