wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limxπ2cos2x1sinx

Open in App
Solution

We have,

limxπ2cos2x1sinx

Put x=π2+h,h0

=limh0cos2(π2+h)1sin(π2+h)

=limh0(sinh)21cosh

[cos(π2+θ)=sinθ,sin(π2+θ)=cosθ]

=limh0(2sinh2cosh2)22sin2h2

[sin2θ=2sinθcosθ,1cos2θ=2sin2θ]

=limh02(cosh2)2

=2(cos0)

=2(1)=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon