wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limxπ22sinx1(π2x)2

Open in App
Solution

We have,

limxπ22sinx1(π2x)2

On rationalising the numerator, we get

=limxπ22sinx1(π2x)2×2sinx+12sinx+1

=limxπ2(2sinx)212(π2x)2(2sinx+1)

[(a+b)(ab)=a2b2]

=limxπ22sinx1(π2x)2(2sinx+1)

=limxπ21sinx(π2x)2(2sinx+1)

Put x=π2+h,h0

=limh01sin(π2+h)(π2(π2+h))2(2sin(π2+h)+1)

=limh01cosh(h)2(2cosh+1)

=limh02sin2h2h2(2cosh+1)

{1cosθ=2sin2θ2}

=limh0sinh22×h2×sinh22×h2×2(2cosh+1)

=12×12×2(2cos0+1)

[limx0sinxx=1]

=12×1(21+1)

=12×12=14

Therefore,

limxπ22sinx1(π2x)2=14

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon