We have,
limx→π2√2−sinx−1(π2−x)2
On rationalising the numerator, we get
=limx→π2√2−sinx−1(π2−x)2×√2−sinx+1√2−sinx+1
=limx→π2(√2−sinx)2−12(π2−x)2(√2−sinx+1)
[∵(a+b)(a−b)=a2−b2]
=limx→π22−sinx−1(π2−x)2(√2−sinx+1)
=limx→π21−sinx(π2−x)2(√2−sinx+1)
Put x=π2+h,h→0
=limh→01−sin(π2+h)(π2−(π2+h))2(√2−sin(π2+h)+1)
=limh→01−cosh(−h)2(√2−cosh+1)
=limh→02sin2h2h2(√2−cosh+1)
{∵1−cosθ=2sin2θ2}
=limh→0sinh22×h2×sinh22×h2×2(√2−cosh+1)
=12×12×2(√2−cos0+1)
[∵limx→0sinxx=1]
=12×1(√2−1+1)
=12×12=14
Therefore,
limx→π2√2−sinx−1(π2−x)2=14