We have,
limx→π3√1−cos6x√2(π/3−x)
=limx→π3√1−cos2(3x)√2(π/3−x)
=limx→π3√2sin23x√2(π/3−x) [∵1−cos2x=2sin2x]
=limx→π3√2sin3x√2(π/3−x)
=limx→π3sin3x(π/3−x)
Put x=π3+h,h→0
=limh→0sin3(π3+h)(π3−(π3+h))
=limh→0sin(π+3h)−h [∵sin(π+θ)=−sinθ]
=limh→0−sin3h−h
=limh→0sin3h13×3h [∵limx→0sinxx=1]
=3(1)=3
Therefore,
limx→π3√1−cos6x√2(π/3−x)=3