We have,
limx→π3√3−tanxπ−3x
Put x=π3+h
=limh→0√3−tan(π3+h)π−3(π3+h)
=limh→0√3−⎛⎜
⎜⎝tanπ3+tanh1−tanπ3tanh⎞⎟
⎟⎠π−3(π3+h)
[∵tan(A+B)=tanA+tanB1−tanAtanB]
=limh→0√3−(√3+tanh1−√3tanh)π−π−3h
=limh→0√3−3tanh−√3−tanhπ−π−3h
=limh→0−4tanh−3h
=43limh→0tanhh [∵limx→0tanxx=1]
=43×1=43