wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limxπ41sin2x1+cos4x

Open in App
Solution

We have,

limxπ41sin2x1+cos4x

Put x=π4+h,

If xπ4, then h0

=limh01sin2(π4+h)1+cos4(π4+h)

=limh01sin(π2+2h)1+cos(π+4h)

=limh01cos2h1cos4h

[sin(π2+θ)=cosθ,cos(π+θ)=cosθ]

=limh02sin2h2sin22h [1cos2θ=2sin2θ]

=limh02sin2h2(2sinhcosh)2

[sin2θ=2sinθcosθ]

=limh02sin2h2×4sin2hcos2h

=limh014cos2h

=14cos20=14

Therefore,

limxπ41sin2x1+cos4x=14

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon