We have,
limx→π41−sin2x1+cos4x
Put x=π4+h,
If x→π4, then h→0
=limh→01−sin2(π4+h)1+cos4(π4+h)
=limh→01−sin(π2+2h)1+cos(π+4h)
=limh→01−cos2h1−cos4h
[∵sin(π2+θ)=cosθ,cos(π+θ)=−cosθ]
=limh→02sin2h2sin22h [∵1−cos2θ=2sin2θ]
=limh→02sin2h2(2sinhcosh)2
[∵sin2θ=2sinθcosθ]
=limh→02sin2h2×4sin2hcos2h
=limh→014cos2h
=14cos20=14
Therefore,
limx→π41−sin2x1+cos4x=14