wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limxπ41tanxxπ4

Open in App
Solution

We have,

limxπ41tanxxπ4

Put x=π4+h,h0

=limh01tan(π4+h)(π4+h)π4

=limh01(tanπ4+tanh)1tanπ4tanh(π4+h)π4

[tan(A+B)=tanA+tanB1tanAtanB]

=limh01(1+tanh)11×tanhh

=limh01tanh(1+tanh)h(1tanh)

=limh02tanhh(1tanh)

=limh02tanhh(1tanh)

=2×1(1tan0)

[limx0tanxx=1]

=2

Therefore,

limxπ41tanxxπ4=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon