We have,
limx→π41−tanxx−π4
Put x=π4+h,h→0
=limh→01−tan(π4+h)(π4+h)−π4
=limh→01−(tanπ4+tanh)1−tanπ4tanh(π4+h)−π4
[∵tan(A+B)=tanA+tanB1−tanAtanB]
=limh→01−(1+tanh)1−1×tanhh
=limh→01−tanh−(1+tanh)h(1−tanh)
=limh→0−2tanhh(1−tanh)
=limh→0−2tanhh(1−tanh)
=−2×1(1−tan0)
[∵limx→0tanxx=1]
=−2
Therefore,
limx→π41−tanxx−π4=−2