wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limxπ4f(x)f(π4)xπ4, where f(x)=sin2x

Open in App
Solution

We have,

limxπ4f(x)f(π4)xπ4

=limxπ4sin2xsinπ2xπ4

=limxπ4sin2x1xπ4

Put x=π4+h,h0

=limh0sin2(π4+h)1(π4+h)π4

=limh0sin(π2+2h)1h

[sin(π2+θ)=cosθ]

=limh0cos2h1h

=limh0(1cos2h)h

=limh02sin2hh [1cos2θ=2sin2θ]

=2limh0sinhh×sinh [limh0sinhh=1]

=2×1×sin0

=0

Therefore,

limxπ4f(x)f(π4)xπ4=0

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon