We have,
limx→π4f(x)−f(π4)x−π4
=limx→π4sin2x−sinπ2x−π4
=limx→π4sin2x−1x−π4
Put x=π4+h,h→0
=limh→0sin2(π4+h)−1(π4+h)−π4
=limh→0sin(π2+2h)−1h
[∵sin(π2+θ)=cosθ]
=limh→0cos2h−1h
=limh→0−(1−cos2h)h
=limh→0−2sin2hh [∵1−cos2θ=2sin2θ]
=−2limh→0sinhh×sinh [∵limh→0sinhh=1]
=−2×1×sin0
=0
Therefore,
limx→π4f(x)−f(π4)x−π4=0