wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limxπ42cosxsinx(π4x)2

Open in App
Solution

We have,

limxπ42cosxsinx(π4x)2

=limxπ42(112cosx12sinx)(π4x)2

=limxπ42(1sinπ4cosxcosπ4sinx)(π4x)2

=limxπ42(1(sinπ4cosx+cosπ4sinx))(π4x)2

=limxπ42(1sin(x+π4))(π4x)2

[sin(A+B)=sinAcosB+cosAsinB]

Put x=π4+h,h0

=limh02(1sin(π4+h+π4))(π4(π4+h))2

=limh02(1sin(π2+h))(π4(π4+h))2

=limh02(1cosh)(h)2

=limh02(2sin2h2)(h)2

[1cosθ=2sin2θ2]

=limh02(2sin2h2)4×h24

=limh0224×⎜ ⎜ ⎜sinh2h2⎟ ⎟ ⎟2

[limx0sinxx=1]

=224×(1)2=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon