We have,
limx→π4√2−cosx−sinx(π4−x)2
=limx→π4√2(1−1√2cosx−1√2sinx)(π4−x)2
=limx→π4√2(1−sinπ4cosx−cosπ4sinx)(π4−x)2
=limx→π4√2(1−(sinπ4cosx+cosπ4sinx))(π4−x)2
=limx→π4√2(1−sin(x+π4))(π4−x)2
[∵sin(A+B)=sinAcosB+cosAsinB]
Put x=π4+h,h→0
=limh→0√2(1−sin(π4+h+π4))(π4−(π4+h))2
=limh→0√2(1−sin(π2+h))(π4−(π4+h))2
=limh→0√2(1−cosh)(−h)2
=limh→0√2(2sin2h2)(−h)2
[∵1−cosθ=2sin2θ2]
=limh→0√2(2sin2h2)4×h24
=limh→02√24×⎛⎜
⎜
⎜⎝sinh2h2⎞⎟
⎟
⎟⎠2
[∵limx→0sinxx=1]
=2√24×(1)2=1√2