wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limxπ8cot4xcos4x(π8x)3

Open in App
Solution

We have,

limxπ8cot4xcos4x(π8x)3

Put x=π8+h,h0

=limh0cot4(π8+h)cos4(π8+h)(π8(π8+h))3

=limh0cot(π2+4h)cos(π2+4h)(ππ8h)3

=limh0tan4h+sin4h(8h)3

[cot(π2+θ)=tanθ]

=limh0sin4hcos4h+sin4h(8h)3

[cos(π2+θ)=sinθ]

=limh0sin4h(11cos4h)(8h)3

=limh0sin4h(cos4h1cos4h)(8h)3

=limh0sin4h((1cos2(2h))cos4h)(8h)3

=limh0sin4h((1cos2(2h))cos4h)(8h)3

=limh0sin4h(2sin22hcos4h)8×8×8h3

[1cos2θ=2sin2θ]

=limh0sin22h(sin4hcos4h)4×8×8h3

=limh0sin22h(tan4h)4×8×8h3

=116limh0sin22h(2h)2×tan4h4h

=116×1×1

[limx0sinxx=1,limx0tanxx=1]

=116

Therefore,

limxπ8cot4xcos4x(π8x)3=116

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon