We have,
limx→π8cot4x−cos4x(π−8x)3
Put x=π8+h,h→0
=limh→0cot4(π8+h)−cos4(π8+h)(π−8(π8+h))3
=limh→0cot(π2+4h)−cos(π2+4h)(π−π−8h)3
=limh→0−tan4h+sin4h(−8h)3
[∵cot(π2+θ)=−tanθ]
=limh→0−sin4hcos4h+sin4h(−8h)3
[∵cos(π2+θ)=−sinθ]
=limh→0sin4h(1−1cos4h)(−8h)3
=limh→0sin4h(cos4h−1cos4h)(−8h)3
=limh→0sin4h(−(1−cos2(2h))cos4h)(−8h)3
=limh→0sin4h(−(1−cos2(2h))cos4h)(−8h)3
=limh→0sin4h(−2sin22hcos4h)−8×8×8h3
[∵1−cos2θ=2sin2θ]
=limh→0sin22h(sin4hcos4h)4×8×8h3
=limh→0sin22h(tan4h)4×8×8h3
=116limh→0sin22h(2h)2×tan4h4h
=116×1×1
[∵limx→0sinxx=1,limx→0tanxx=1]
=116
Therefore,
limx→π8cot4x−cos4x(π−8x)3=116