wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limxπ/221+sinxcos2x

Open in App
Solution

We have,

limxπ/221+sinxcos2x

On rationalising the numerator, we get

=limxπ/221+sinxcos2x×2+1+sinx2+1+sinx

=limxπ/2(2)2(1+sinx)2cos2x(2+1+sinx)

[(a+b)(ab)=a2b2]

=limxπ/221sinxcos2x(2+1+sinx)

=limxπ/21sinx(1sin2x)(2+1+sinx)

[sin2x+cos2x=1]

=limxπ/21sinx(1sinx)(1+sinx)(2+1+sinx)

=limxπ/21(1+sinx)(2+1+sinx)

=1(1+sinπ2)(2+1+sinπ2)

=1(1+1)(2+1+1)

=12(22)

=142

Therefore,

limxπ/221+sinxcos2x=142

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon