We have,
limx→π/2√2−√1+sinxcos2x
On rationalising the numerator, we get
=limx→π/2√2−√1+sinxcos2x×√2+√1+sinx√2+√1+sinx
=limx→π/2(√2)2−(√1+sinx)2cos2x(√2+√1+sinx)
[∵(a+b)(a−b)=a2−b2]
=limx→π/22−1−sinxcos2x(√2+√1+sinx)
=limx→π/21−sinx(1−sin2x)(√2+√1+sinx)
[∵sin2x+cos2x=1]
=limx→π/21−sinx(1−sinx)(1+sinx)(√2+√1+sinx)
=limx→π/21(1+sinx)(√2+√1+sinx)
=1(1+sinπ2)(√2+√1+sinπ2)
=1(1+1)(√2+√1+1)
=12(2√2)
=14√2
Therefore,
limx→π/2√2−√1+sinxcos2x=14√2