Given: limx→√2x2−2x2+√2x−4 becomes 00 form
Using Factorization method
⇒limx→√2x2−2x2+√2x−4
⇒limx→√2x2−(√2)2x2+√2x−4
⇒limx→√2(x2+√2)(x−√2)x2+2√2x−√2x−4
[∵(a2−b2)=(a+b)(a−b)]
⇒limx→√2(x+√2)(x−√2)x(x+2√2)−√2(x+2√2)
⇒limx→√2(x+√2)(x−√2)(x+2√2)(x−√2)
⇒limx→√2(x+√2)(x+2√2)
=2√23√2=23
Therefore,
limx→√2x2−2x2+√2x−4=23