Given that-
x=3+2i
⇒x−3=2i
⇒(x−3)2=(2i)2squaring on both sides
⇒x2−6x+9=4i2
⇒x2−6x+13=0…(1)
⇒x4−4x3+4x2+8x+44
=x2(x2−6x+13)+2x3−9x2+8x+44
=x2(x2−6x+13)+2x(x2−6x+13)+3x2−18x+44
=x2(x2−6x+13)+2x(x2−6x+13)+3(x2−6x+13)+5
=x2×0+2x×0+3×0+5fromeqn(1)
=5
Therefore , x4−4x3+4x2+8x+44=5