Evaluate the product 103×107 without multiplying directly
Given expression can be written as
103×107=(100+3)×(100+7)
We know that
(x+a)(x+b)=x2+(a+b)x+ab
Here x=100,a=3,b=7
⇒(100+3)×(100+7)]=(100)2+(3+7)×100+(3×7)=10000+1000+21=11021
Hence the product is 11021