Evaluate the value of the following expression:
A=cos58∘sin32∘+sin22∘cos68∘−cos38∘ cosec52∘tan18∘tan72∘
Given,
cos58∘=sin(90∘−58∘)=sin32∘
cos58∘sin32∘=sin32∘sin32∘=1
sin22∘cos(90∘−22∘)=cos68∘
sin22∘cos68∘=cos68∘cos68∘=1
cos38∘ cosec52∘=cos38∘sin52∘
=cos38∘cos(90∘−38∘)
=cos38∘cos38∘=1
tan18∘tan72∘=tan18∘cot(90∘−18∘
=tan18∘cot∘
=1
Hence, A=cos58∘sin32∘+sin22∘cos68∘−cos38∘ cosec52∘tan18∘tan72∘
A=1+111
=2−1
=1