Consider the given limit.
K=limn→∞(n!nn)1/n
Take log on both sides.
lnK=limn→∞1nln(n!nn)
lnK=limn→∞1n[ln(1n.2n.3n........nn)]
lnK=limn→∞1nn∑r=1ln(rn)
lnK=1∫0lnxdx
lnK=[xlnx]10−[x]10
lnK=0−0−1
lnK=−1
K=e−1
K=1e
Hence, this is the required value of the limit.