Evaluate limx→0(1+x)6−1(1+x)5−1
Put (1+x)=y, so that when x→0 then y→1.
∵limx→0(1+x)6−1(1+x)5−1
=limy→1(y6−1y5−1)=limy→1(y6−1y−1)limy→1(y5−1y−1)=limy→1(y6−16y−1)limy→1(y5−15y5−1)=6×1(6−1)5×1(5−1)
=6×155×14=65 [∵limx→a(xn−anx−a)=nan−1]
(i) Find the derivative of √(x−1)(x−2)(x−3)(x−4) + sin x1+tan x
(ii) Evaluate limx→0(1+x)6−1(1+x)2−1
limx→0(1+x)6−1(1+x)2−1