Evaluate limx→0={|xx|,x≠00,x=0
Here limx→0={|xx|,x≠00,x=0
L.H.L. = limx→0−f(x)=limx→0−|x––|x
Put x=0 - h as x→0,h→0
∴limh→0|0−h|0−h=limh→0|−h|−h=−1
R.H.L. = limx→0+f(x)=limx→0+hh=1
Now L.H.L. ≠ R.H.L.
Thus limit does not exist at x =0.
Find limx→0 f(x) and limx→1 f(x) where f(x)= {2x+3x≤03(x+1)x>0
f(x)={|x|x, if x≠00, if x=0
f(x)={x2sin1x,if x≠00,if x=0