We have,
limx→2x3−3x2+4x4−8x2+16
=limx→2x3−3x2+4x4−8x2+42
Solve,
Numerator
then, put x=2,
23−3×22+4=0
Divide x−2)x3−3x2+4(x2−x−2
x3−2x2
_______________
−x2+4
−x2+2x
______________
−2x+4
−2x+4
____________
0
Now, x3−3x2+4=(x−2)(x2−x−2)
limx→2x3−3x2+4x4−8x2+42
=limx→2(x−2)(x2−x−2)(x2−42)
=limx→2(x−2)(x2−(2−1)x−2)(x2−4)(x2−4)
=limx→2(x−2)(x2−2x+1x−2)(x2−22)(x2−22)
=limx→2(x−2)(x(x−2)+1(x−2))(x−2)(x+2)(x−2)(x+2)
=limx→2(x−2)(x−2)(x+1)x−2)(x−2)(x+2)(x+2)
=limx→2x+1(x+2)(x+2)
Now, taking limit and we get
=2+1(2+2)(2+2)
=34×4
=316
Hence, this is the answer.