Evaluate limx→2(e3x−1x)
limx→0(e3x−1x)=lim3x→0{(e3x−13x)×3} [∵(x→0)⇒(3x→0)]
=3×limy→0(ey−1y),where y=3x
=(3×1)=3 [∵limy→0(ey−1y)=1]