Evaluate limx→π4(sin x −cos x)(x−π4)
put (x−π4)=y so that when x→π4 then y→0.
∴limx→π4(sin x −cos x)(x−π4)
=limy→0{sin(π4+y)−cos (π4+y)}y [putting (x−π4)=y]
=limy→0{(π4cos y+cos π4 sin y)−(cos π4 cos y−sin π4 sin y)}y
=2√2×limy→0(sin yy)=(√2×1)=√2.