We have,
Let,
y=(tanπx4)tanπx2
Taking log both side and we get,
limx→1logy=loglimx→1(tanπx4)tanπx2
⇒limx→1logy=tanπx2loglimx→1(tanπx4)0×∞form
⇒limx→1logy=loglimx→1(tanπx4)cotπx2
Applying L’ Hospital rule and we get,
limx→1logy=π4sec2πx4tanπx4×1(−π2)csc2πx2
=π4(√2)21×1−π2×1=−1
limx→1logy=loglimx→1(tanπx4)tanπx2
loglimx→1(tanπx4)tanπx2=−1
⇒limx→1(tanπx4)tanπx2=e−1
⇒limx→1(tanπx4)tanπx2=1e
Hence, this is the
answer.