Evaluate limx→√10√7−2x−(√5−√2)x2−10
Or
Differentiate x2 cos x by first principle.
We have,limx→√10√7−2x−(√5−√2)x2−10
=limx→√10√7−2x−(√5−√2)x2−10
=limx→√10√7−2x−√7−2√10x2−10
=limx→√10√7−2x−√7−2√10x2−10×=limx→√10√7−2x+√7−2√10√7−2x+√7−2√10
=limx→√10(7−2x)−(7−2√10)(x+√10)(x−√10)(√7−x)+√7−2√10
=limx→√10−2x+2√10(x+√10)(x−√10)(√7−x)+√7−2√10
=limx→√10−2(x−√10(x+√10)(x−√10)(√7−x)+√7−2√10
limx→√10−2(x+√10)(√7−2x)+√7−x√10
limx→√10−22√10(2√7−2√10)=−12√10√(√5−√2)2
=−12√10(√5−√2)=−12√10(√5−√2)×(√5+√2)(√5+√2)
=−(√5+√2)2√10×3=−(√5+√2)6√10
Or
Let f(x)=x2 cos x.then f(x+h)=(x+h)2 cos (x+h)
∴f′(x)=limh→0f(x+h)−f(x)h
=limh→0(x2+2hx+h2)cos(x+h)−x2 cos xh
=limh→0x2[cos(x+h)−cos x]+h(2x+h)(cos(x+h))h
=limh→0x2(−2)sin(x+h+x2)sin(x+h−x2)h+2x cos x
=limh→0−2x2 sin(x+h2)sinh22×h2+2x cos x
=−x2 sin x+2x cos x [∵=limh→0sin hh=1]