The correct option is
C 6ln|x|+8ln|x−5|−7ln|x+5|+cLet
7x2+75x−150x3−25x=Ax+B(x−5)+C(x+5) ..... (1)
Multiply x3−25x on both the sides, we get
7x2+75x−150=A(x−5)(x+5)+Bx.(x+5)+C.x(x−5)
Put x=0 to find value of A
∴−150=A(−5)(5)⇒A=6
Put x=5 to find value of B
∴7(5)2+75(5)−150=B(5)(10)⇒B=8
Put x=−5 to find value of C
∴7(−5)2+75(−5)−150=C(−5)(−10)⇒C=7
Substitute the value of A,B and C in equation (1), we get
7x2+75x−150x3−25x=6x+8(x−5)+7(x+5)
Now, integrating on both sides, we get
∫7x2+75x−150x3−25xdx=∫6xdx+∫8(x−5)dx+∫7(x+5)dx
=6ln|x|+8ln|x−5|+ln|x+5|+c