wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:
xx2sinx.

Open in App
Solution

given y=xx2sinx

Let y=xx and y2=2sinx

then dydx=dydx1dydx2
logy1=xlogx;logy2=sinxlog2
1y1dydx1=logx+x×1x;1y2dydx2=cosx.log2

1y1dydx1=logx+1;1y2dydx2=coslog2
dydx1=y1(1+logx);dydx2=2sinx.cosx.log2

dydx=dydx1dydx2

dydx=xx(1+logx)2sinxcosxlog2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon