Evaluating ∫π20cos2xdx1+3sin2x
Let I = ∫π20cos2xdx1+3 sin2x ⇒I=∫π20sec2xdxsec4x+3sec2x tan2x on Dividing Nr & Dr by cos4x
∴I=∫pi20sec2xdxsec2 x(1+tan2 x+3 tan2 x) ⇒I=∫pi20sec2xdx(1+tan2 x)(1+4 tan2 x)
Put tan x = t ⇒sec2xdx = dt. When x = 0 Rightarrow t = 0 & when x = π2⇒t=∞
So I = ∫∞0dt(1+t2)(1+4 t2) ⇒I=−13∫∞0(11+t2−41+4 t2)dt
⇒I=−13[tan−1 t−4 tan−1(2t)2]∞0 ∴I=−13[(π2−2×π2)−(0−0)]=π6.