Given,
P(A)=12,P(B)=712
and P(not A or not B)=14
⇒P(A′∪B′)=14
P(A∩B)′=14 [∵(A′∪B′)=(A∩B)′]
We know that
P(A∩B)=1−P(A∩B)′...(1)
[∵(A∩B)′=1−(A∩B)′]
Putting P(A∩B)′ in (1)
⇒P(A∩B)=1−14
∴P(A∩B)=34
By the properties of independent events
P(A∩B)=P(A)×P(B)...(2)
Putting the value of P(A),P(B) & P(A∩B) in (2)
⇒34=12×712.
⇒34≠724
L.H.S.≠R.H.S.
Therefore , A & B are not independent events.