1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VIII
Mathematics
Laws of Exponents
∫ex 1- x 1+ x...
Question
∫
e
x
1
-
x
1
+
x
2
2
d
x
is
equal
to
(
a
)
e
x
1
+
x
+
C
(
b
)
-
e
x
1
+
x
2
+
C
(
c
)
e
x
(
1
+
x
2
)
2
+
C
(
d
)
-
e
x
(
1
+
x
2
)
2
+
C
Open in App
Solution
I
=
∫
e
x
1
-
x
1
+
x
2
2
d
x
⇒
I
=
∫
e
x
1
+
x
2
-
2
x
1
+
x
2
2
d
x
⇒
I
=
∫
e
x
1
1
+
x
2
+
-
2
x
1
+
x
2
2
d
x
Let
f
x
=
1
1
+
x
2
⇒
f
'
x
=
-
2
x
1
+
x
2
2
∴
I
=
e
x
1
1
+
x
2
+
C
∫
e
x
f
x
+
f
'
x
d
x
=
e
x
f
x
+
C
Hence, the correct answer is option (c).
Suggest Corrections
0
Similar questions
Q.
∫
e
x
(
1
−
x
1
+
x
2
)
2
dx
=
Q.
∫
e
x
(
1
−
x
)
2
(
1
+
x
2
)
2
d
x
.
Q.
∫
e
x
1
-
cot
x
+
cot
2
x
d
x
=
(a) e
x
cot x + C
(b) −e
x
cot x + C
(c) e
x
cosec x + C
(d) −e
x
cosec x + C
Q.
∫
e
x
(
1
−
x
1
+
x
2
)
2
d
x
.
Q.
equals
A. − cot (
ex
x
) + C
B. tan (
xe
x
) + C
C. tan (
e
x
) + C
D. cot (
e
x
) + C