4
You visited us
4
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Rank of a Matrix
Examine the c...
Question
Examine the consistency of the system of equations
3
x
−
y
−
2
z
=
2
,
2
y
−
z
=
−
1
,
3
x
−
5
y
=
3
Open in App
Solution
Given system of equations
3
x
−
y
−
2
z
=
2
2
y
−
z
=
−
1
3
x
−
5
y
=
3
This can be written as
A
X
=
B
where
A
=
⎡
⎢
⎣
3
−
1
−
2
0
2
−
1
3
−
5
0
⎤
⎥
⎦
,
X
=
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
,
B
=
⎡
⎢
⎣
2
−
1
3
⎤
⎥
⎦
Here,
|
A
|
=
3
(
0
−
5
)
+
1
(
0
+
3
)
−
2
(
0
−
6
)
⇒
|
A
|
=
0
Since,
|
A
|
=
0
Hence, the system of equations has either infinitely many solutions (consistent) or no solution (inconsistent).
We need to find
(
a
d
j
A
)
B
C
11
=
(
−
1
)
1
+
1
∣
∣
∣
2
−
1
−
5
0
∣
∣
∣
⇒
C
11
=
0
−
5
=
−
5
C
12
=
(
−
1
)
1
+
2
∣
∣
∣
0
−
1
3
0
∣
∣
∣
⇒
C
12
=
−
(
0
+
3
)
=
−
3
C
13
=
(
−
1
)
1
+
3
∣
∣
∣
0
2
3
−
5
∣
∣
∣
⇒
C
13
=
0
−
6
=
−
6
C
21
=
(
−
1
)
2
+
1
∣
∣
∣
−
1
−
2
−
5
0
∣
∣
∣
⇒
C
21
=
−
(
0
−
10
)
=
10
C
22
=
(
−
1
)
2
+
2
∣
∣
∣
3
−
2
3
0
∣
∣
∣
⇒
C
22
=
0
+
6
=
6
C
23
=
(
−
1
)
2
+
3
∣
∣
∣
3
−
1
3
−
5
∣
∣
∣
⇒
C
23
=
−
(
−
15
+
3
)
=
12
C
31
=
(
−
1
)
3
+
1
∣
∣
∣
−
1
−
2
2
−
1
∣
∣
∣
⇒
C
31
=
1
+
4
=
5
C
32
=
(
−
1
)
3
+
2
∣
∣
∣
3
−
2
0
−
1
∣
∣
∣
⇒
C
32
=
−
(
−
3
−
0
)
=
3
C
33
=
(
−
1
)
3
+
3
∣
∣
∣
3
−
1
0
2
∣
∣
∣
⇒
C
33
=
6
−
0
=
6
Hence, the co-factor matrix is
C
=
⎡
⎢
⎣
−
5
−
3
−
6
10
6
12
5
3
6
⎤
⎥
⎦
⇒
a
d
j
A
=
C
T
=
⎡
⎢
⎣
−
5
10
5
−
3
6
3
−
6
12
6
⎤
⎥
⎦
Now,
(
a
d
j
A
)
B
=
⎡
⎢
⎣
−
5
10
5
−
3
6
3
−
6
12
6
⎤
⎥
⎦
⎡
⎢
⎣
2
−
1
3
⎤
⎥
⎦
=
⎡
⎢
⎣
−
10
−
10
+
15
−
6
−
6
+
9
−
12
−
12
+
18
⎤
⎥
⎦
⇒
(
a
d
j
A
)
B
=
⎡
⎢
⎣
−
5
−
3
−
6
⎤
⎥
⎦
Since,
(
a
d
j
A
)
B
≠
O
Hence, the system of equations is inconsistent.
Suggest Corrections
0
Similar questions
Q.
Examine the consistency of the system of equations.
3
x
−
y
− 2z = 2
2
y
−
z
= −1
3
x
− 5
y
= 3