Let the matrix
A be
⎡⎢⎣436157291⎤⎥⎦ and matrix
B be
⎡⎢⎣25131⎤⎥⎦|A|≠0 , therefore the rank of A is 3
Now consider A|B=⎡⎢⎣43625157132911⎤⎥⎦ , the rank is 3
Therefore ρ(A)=ρ(A|B)=3 , which implies that the system of equations is consistent.
ρ(A)=ρ(A|B)= number of rows , therefore the sytem has unique solution.
We will solve it by determinant method.
The value of D=∣∣
∣∣436157291∣∣
∣∣=−199
Dx=∣∣
∣∣36255713911∣∣
∣∣=−796
Dy=∣∣
∣∣41225131671∣∣
∣∣=199 ,
Dz=∣∣
∣∣41235925131∣∣
∣∣=−398
Therefore x=−796−199=4 , y=199−199=−1 and z=−398−199=2
Hence 4,−1,2 is the solution of the given simultaneous equations.