wiz-icon
MyQuestionIcon
MyQuestionIcon
13
You visited us 13 times! Enjoying our articles? Unlock Full Access!
Question

Examine the continuity of the following function at given points:
(i) f(x)=e5xe2xsin3x,for x0 =1,for x0

Open in App
Solution

We have,

f(x)=e5xe2xsin3x for x0

For continuity

L.H.L.

limx0f(x)=limx0e5xe2xsin3x

limx0f(x)=limh0f(0h)=limh0e5(0h)e2(0h)sin3(0h)

limx0f(x)=limh0e5he2hsin3h

limx0f(x)=limh0e5×0e2×0sin3×0

limx0f(x)=0


R.H.L.

limx0+f(x)=limx0+e5xe2xsin3x

limx0+f(x)=limh0f(0+h)=limh0e5(0+h)e2(0+h)sin3(0+h)

limx0f(x)=limh0e5he2hsin3h

limx0f(x)=limh0e5×0e2×0sin3×0

limx0f(x)=0

L.H.L=R.H.L

It is continuous

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon