We have,
f(x)=e5x−e2xsin3x for x≠0
For continuity
L.H.L.
limx→0−f(x)=limx→0−e5x−e2xsin3x
limx→0−f(x)=limh→0f(0−h)=limh→0e5(0−h)−e2(0−h)sin3(0−h)
limx→0−f(x)=limh→0e−5h−e−2h−sin3h
limx→0−f(x)=limh→0e−5×0−e−2×0−sin3×0
limx→0−f(x)=0
R.H.L.
limx→0+f(x)=limx→0+e5x−e2xsin3x
limx→0+f(x)=limh→0f(0+h)=limh→0e5(0+h)−e2(0+h)sin3(0+h)
limx→0−f(x)=limh→0e5h−e2hsin3h
limx→0−f(x)=limh→0e5×0−e2×0sin3×0
limx→0−f(x)=0
L.H.L=R.H.L
It is continuous
Hence, this is the answer.