(1.)LHL=2RHL=3∴limitdoesn′texist(2.)LHL=3RHL=3∴limit=3(3.)LHL=3RHL=3∴limit=3(4.)doesn′texistatgraphnotavailable(5.)RHL=3
If the function f(x) satisfies limx→1f(x)−2x2−1=π, evaluate limx→1 f(x).
limx→ af(x) exists if and only if
1. limx→ a+f(x) andlimx→ a−f(x) exist finitely
2. limx→ a+f(x)=limx→ a−f(x)=f(a)