wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Examine the maxima and minima of the function f(x)=2x321x2+36x20. Also, find the maximum and minimum values of f(x).

Open in App
Solution

Given, f(x)=2x321x2+36x20
f(x)=6x242x+36
When f(x) is a maximum or a minimum, f(x)=0
Hence, 6x242x+36=0
x27x+6=0
x26xx+6=0
x(x6)1(x6)=0
(x6)(x1)=0
x=1,6
Again f′′(x)=12x42
=6(2x7)
Now, when x=1,f′′(x)=30 ....[negative]
And when x=6,f′′(x)=30 ....[positive]
Hence, f(x) is maximum for x=1 and minimum for x=6.
The maximum and minimum values of f(x) are
f(1)=2(1)321(1)2+36(1)20
=221+3620=3
f(6)=2(6)221(6)2+36(6)20
=432756+21620=128

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon