Consider the given vectors.
Let ,
Position vector points A, B and C are
→a=2ˆi+3ˆj+2ˆk,→b=ˆi−ˆj+2k,→c=3ˆi+2ˆj−4ˆk
Direction ratios of line AB are ,
1−2,−1−3,2−2i.e.,−1,−4,0 .
Direction ratios of line BC are ,
3−1,2+1,−4−2i.e.2,3,−6.
Direction ratios of line CA are ,
2−3,3−2,2+4i.e.,−1,1,6 .
Now,
Direction cosines of AB are ,
⇒−1√(−1)2+(−4)2+02,−4√(−1)2+(−4)2+02,0√(−1)2+(−4)2+02
⇒−1√17,−4√17,0
Direction cosines of line BC are,
⇒2√22+32+(−6)2,3√22+32+(−6)2,−6√22+32+(−6)2
⇒27,37,−67
Direction cosines of line CA are,
⇒−1√(−1)2+12+62,1√(−1)2+12+62,6√(−1)2+12+62
⇒−1√37,1√37,6√37
Hence , this is the answer .