Examinie the continuity of the function f(x)=x3+2x2−1 at x=1
We have, f(x)=x3+2x2−1atx=1∴limx→1−f(x)=limh→0(1−h)3+2(1−h)2−1=2
and limx→1+f(x)=limh→0(1+h)3+2(1+h)2−1=2∴ limx→1+f(x)=limx→1−f(x)
and f(1)=1+2−1=2
So, f(x) is continuous at x=1,
Note Every polynomial function is continuous at any real point.