The correct option is D (−∞,−1)∪(−1,0)∪(1,∞)
log|x|(x2+x+1)≥0
logx(x2+x+1)≥0 (since, base of logarithm is to be positive)
Here, the base x can be either >1 or 0<x<1
Case I: When x>1
f(x)≥1
⇒x2+x+1≥1
⇒x(x+1)≥0
⇒x∈(−∞,−1)∪(0,∞) ....(1)
Case II: When 0<|x|<1
f(x)≤1
⇒x2+x+1≤1
⇒x(x+1)≤0
⇒x∈(−1,0) ....(2)
From (1) and (2), it follows that
x∈(−∞,−1)∪(−1,0)∪(1,∞)